Kode Program : R Studio (Identifikasi Outlier, Uji Normalitas, Uji Homogenitas Varians, Independent Sample T-Test, dll).
#generate normal random distribution for 20 samples
nilaiPreKlEksp <- rnorm(20, mean=55, sd=4.3)
nilaiPostKlEksp <- rnorm(20, mean=82, sd=4)
nilaiPreKlKontr <- rnorm(20, mean=68, sd=3.2)
nilaiPostKlKontr <- rnorm(20, mean=78, sd=3)
nilaiPreKlEksp
nilaiPostKlEksp
nilaiPreKlKontr
nilaiPostKlKontr
library(readr)
IndependentSampleTTest <- read_csv("D:/HAVIZUL DATA 2023/2023 Desain dan Analisas Eksperimen/IndependentSampleTTest.csv")
IndependentSampleTTest
print(IndependentSampleTTest, n=40)
#getwd() #Shows the default working directory
IndependentSampleTTest <- read.csv("D:/HAVIZUL DATA 2023/2023 Desain dan Analisas Eksperimen/IndependentSampleTTest.txt")
IndependentSampleTTest
class(IndependentSampleTTest)
library(readxl)
IndependentSampleTTest <- read_excel("D:/HAVIZUL DATA 2023/2023 Desain dan Analisas Eksperimen/IndependentSampleTTest.xlsx", sheet = "Sheet1")
print(IndependentSampleTTest, n = 40)
nilaiKelEksp <- subset(IndependentSampleTTest$Nilai, IndependentSampleTTest$Kelompok == "E")
nilaiKelEksp
nilaiKelKontr <- subset(IndependentSampleTTest$Nilai, IndependentSampleTTest$Kelompok == "K")
nilaiKelKontr
#Uji normalitas dengan shapiro wilk
shapiro.test(nilaiKelEksp)
shapiro.test(nilaiKelKontr)
#Uji normalitas dengan visual
library("ggplot2")
library("ggpubr")
ggdensity(nilaiKelEksp, fill = "green")
ggqqplot(nilaiKelEksp)
ggdensity(nilaiKelKontr, fill = "blue")
ggqqplot(nilaiKelKontr)
hist(nilaiKelEksp)
hist(nilaiKelKontr)
#Uji Homogenitas Variansi (F-Test)
#var.test(IndependentSampleTTest$Nilai~IndependentSampleTTest$Kelompok, data = IndependentSampleTTest)
var.test(Nilai~Kelompok, data = IndependentSampleTTest)
#Uji Homogenitas Varians dengan Bartlett
bartlett.test(Nilai~Kelompok, data = IndependentSampleTTest)
#Uji Homogenitas Variansi dengan Levene Test
library(carData)
library(car)
leveneTest(Nilai~Kelompok, data = IndependentSampleTTest)
#Visualisasi Variability
#Sumber : https://cran.r-project.org/web/packages/VCA/vignettes/VCA_package_vignette.html
#install.packages("VCA")
#library(VCA)
#data("VCAdata1")
#VCAdata1
#datS5 <- subset(VCAdata1, sample==5)
#datS5
#varPlot(form = Nilai~Kelompok, Data = IndependentSampleTTest)
#INDEPENDENT SAMPLE T-TEST
#Data deskriptif
IndependentSampleTTest %>% group_by(Kelompok) %>% get_summary_stats(Nilai, type = "mean_sd")
#Visualisasi dengan boxplot
ggboxplot(IndependentSampleTTest, x = "Kelompok", y = "Nilai", ylab = "Nilai (Gain Score)", xlab = "Kelompok", add = "jitter")
#Identifikasi nilai outlier
#Cara Manual (sumber: https://www.reneshbedre.com/blog/find-outliers.html) :
# get median
med = median(nilaiKelEksp)
# subtract median from each value of x and get absolute deviation
abs_dev = abs(nilaiKelEksp-med)
# get MAD
mad = 1.4826 * median(abs_dev)
# get threshold values for outliers
Tmin = med-(3*mad)
Tmax = med+(3*mad)
# find outlier
nilaiKelEksp[which(nilaiKelEksp < Tmin | nilaiKelEksp > Tmax)]
# remove outlier
#x[which(x > Tmin & x < Tmax)]
# get median
med = median(nilaiKelKontr)
# subtract median from each value of x and get absolute deviation
abs_dev = abs(nilaiKelKontr-med)
# get MAD
mad = 1.4826 * median(abs_dev)
# get threshold values for outliers
Tmin = med-(3*mad)
Tmax = med+(3*mad)
# find outlier
nilaiKelKontr[which(nilaiKelKontr < Tmin | nilaiKelKontr > Tmax)]
# remove outlier
#x[which(x > Tmin & x < Tmax)]
#Cara otomatis (mengidentifikasi outliers berdasarkan kelompok) (Sumber : Buku Alboukadel Kassambara)
library(rstatix)
IndependentSampleTTest %>%
group_by(Kelompok) %>%
identify_outliers(Nilai)
#Uji Normalitas Shapiro Wilk by groups
IndependentSampleTTest %>% group_by(Kelompok) %>% shapiro_test(Nilai)
#Draw qqplot by group
ggqqplot(IndependentSampleTTest, x = "Nilai", facet.by = "Kelompok")
#Uji kesetaraan variansi dengan Levene's Test
IndependentSampleTTest %>% levene_test(Nilai~Kelompok)
#Independent Sample T-Test untuk variansi sama : STUDENT T-TEST
IndependentSampleTTest %>% t_test(Nilai ~ Kelompok, var.equal = TRUE, detailed = TRUE, alternative = "greater") %>% add_significance()
#Independent Sample T-Test untuk variansi tidak sama : WELTCH T-TEST
IndependentSampleTTest %>% t_test(Nilai ~ Kelompok, var.equal = FALSE, detailed = TRUE, alternative = "greater") %>% add_significance()